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Abstract

Engineering design optimization often gives rise to problems in which expensive objective func-

tions are minimized by derivative-free methods. We propose a method for solving such problems

that synthesizes ideas from the numerical optimization and computer experiment literatures.

Our approach relies on kriging known function values to construct a sequence of surrogate mod-

els of the objective function that are used to guide a grid search for a minimizer. Results from

numerical experiments on a standard test problem are presented.
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1 Introduction

We consider the problem of minimizing an objective function f : _P --_ _ subject to bound con-

straints, i.e.

minimize f (x )
subject to x e [a, b], (1)

where a,x,b C _P and we write x E [a,b] to denote ai <_ xi <_ bi for i = 1,...,p. We are

concerned with special cases of Problem (1) for which evaluation of the objective function involves

performing one (or more) complicated, deterministic computer simulation(s). Many such problems

arise as engineering design problems and are often distinguished by two troubling characteristics

that preclude solution by traditional algorithms for bound-constrained optimization.

First, the output of a complicated computer simulation is usually affected by a great many

approximation, rounding and truncation errors. These errors are not stochastic--repeating the

simulation will reproduce them--but their accumulation introduces high-frequency, low-amplitude

distortions of the idealized objective that we would have liked to optimize. In consequence, opti-

mization algorithms that compute or approximate (by finite differencing) derivatives of f often fail

to exploit general trends in the objective function and become trapped in local minimizers created

by high-frequency oscillations. In order to develop effective algorithms for such applications, we

restrict attention to derivative-free methods for numerical optimization.

Second, complicated computer simulations are often expensive to perform. Frank (1995) sug-

gested that one must address problems in which a typical function evaluation costs several hours of

supercomputer time. For example, Booker (1996) and Booker et al. (1996) studied an aeroelastic

and dynamic response simulation of a helicopter rotor blade for which a single function evaluation

requires approximately six hours of cpu time on a Cray Y-MP. We formalize the notion that the

objective function is expensive to evaluate by imposing an upper bound V on the number of eval-

uations of f that we are allowed to perform. The severity of this restriction will depend (in part)

on the relation between V and p.

When attempting to minimize an objective function f that is too expensive for standard numer-

ical optimization algorithms to succeed, it has long bccn a standard engineering practice, described

by Barthelemy and Haftka (1993), to replace f with an inexpensive surrogate ] and minimize ]

instead. (For example, one might evaluate f at V- 1 carefully selected sites, construct ] from

the resulting information, use a standard numerical optimization algorithm to minimize ], and

evaluate f at the candidate minimizer thus obtained.) This practice may also have the salutory

effect of smoothing high-frequency oscillations in f. The rapidly growing literature on computer

experiments offers new and potentially better ways of implementing this traditional practice. The

prescription that seems to be gaining some currency in the engineering community was proposed by

Welch and Sacks (1991); following current convention, we refer to it as DACE (Design and Analysis

of Computer Experiments). Frank (1995) offered an optimizer's perspective on this methodology,

suggested that the "minimalist approach" of minimizing a single f is not likely to yield satisfactory

results, and proposed several sequential modeling strategies as alternatives. Booker (1996) studied

several industrial applications of DACE and two alternative approaches.

It is not our purpose in this report to provide a thorough critique of DACE as a method for

minimizing expensive objective functions. We regard DACE and traditional iterative methods for

numerical optimization as occupying opposing ends of a spectrum. When V is large relative to

p, say p = 2 and V = 500, then the expense of function evaluation is not an issue and we are

content to rely on traditional iterative methods. When V is not large relative to p, say p = 2

and V = 5, then the expense of function evaluation is completely crippling and wc are content to

rely on DACE. (If V < p, then the methodologies that we consider are not appropriate.) In this



report we are concerned with intermediate situations and we borrow ideas from both the numerical

optimization and the computer experiment literatures. We describe a sequential modeling strategy

in which computer experiment models are used to guide a grid search for a minimizer. Our methods

elaborate and extend an important special case of the general model management strategy proposed

by Dennis and Torczon (1996) and developed by Serafini (1997). These efforts are part of a larger

collaboration described by Booker et al. (1995) and Booker et al. (1996).

2 Pattern Search Methods

We require a method of solving Problem (1) that does not require derivative information. For

unconstrained optimization, a popular derivative-free method is the simplex method proposed by

Nelder and Mead (1965). This method is sometimes adapted for constrained optimization by means

of a simple ad hoc device, viz. setting f(x) = oc when x _ [a, b]. Unfortunately, the Nelder-Mead

simplex method is suspect even for unconstrained optimization. For example, McKinnon (1996)

has constructed a family of strictly convex, diffcrentiable objective functions on _2 for which there

exist starting points from which Nelder-Mead will fail to converge to a stationary point. Instead,

we rely on a class of methods for which a convergence theory exists, the pattern search methods

explicated by Torczon (1997) for the case of unconstrained optimization and extended by Lewis

and Torczon (1996a) to the case of bound-constrained optimization.

Pattern search methods are iterative algorithms for numerical optimization. Such algorithms

produce a sequence of points, {xk}, from an initial point, x0, provided by the user. To specify an

algorithm, one must specify how it progresses from the current iterate, Xc, to the subsequent iterate,

x+. One of thc distinguishing features of pattern search methods is that they restrict their search

for x+ to a grid (more formally, a lattice) that contains Xc. The grid is modified as optimization

progresses, according to rules that ensure convergence to a stationary point.

The essential logic of a pattern search is summarized in Figure 1. The reader is advised that this

description of pattern search methods differs from the presentation in Torczon (1997) and Lewis

and Torczon (1996a, 1996b). For example, the choice of a starting point is usually not restricted

and the initial grid is constructed so that it contains the starting point. More significantly, pattern

search methods are usually specified by rules that prescribe where the algorithm is to search for

the subsequent iterate and the notion of an underlying grid is implicit in these rules. In this report,

the grid is explicit and the search for a subsequent iterate is not restricted to a specific pattern of

points. What should be appreciated is that the present description preserves all of the elements

of pattern search methods required by their convergence theory. A detailed explication of the

connection between these perspectives will be provided by Serafini (1997).

It is evident that the crucial elements of a pattern search algorithm are contained in the speci-

fication of 2(b) in Figure 1. The fundamental idea is to try to find a point on the current grid that

strictly decreases the current value of the objective function. Any such point can be taken to bc

the subsequent iterate. If one fails to find such a point, then one replaces the current grid with a

finer one and tries again.

Torczon (1997) described the search in 2(b)(i) as an exploratory moves algorithm. Here wc

distinguish two components of an exploratory moves algorithm: an oracle that produces a set of

trial points on the current grid and a core pattern of trial points on the grid at which the objectivc

function must bc evaluated before the algorithm is permitted to refine the grid. The convergencc

theory requires that the core pattern satisfy certain hypotheses; no hypotheses are placed on the
oracle.

Because the methods proposed in this report critically depend on the arbitrary nature of the or-
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1. Specifythe currentgrid. Selectx0 from the current grid. Let xc = xo.

2. Do until convergence:

(a) Let T(+) = 0.

(b) Do while T(÷) = 0:

i. Search the current grid for a set of xt E [a, b] at which f is then evaluated. Let T(+)

denote the set of grid points xt E [a, b] thus obtained for which f(xt) < f(xc).

ii. Update the grid.

(c) Choose x+ E T(÷).

(d) Let xc = x+.

Figure 1: Pattern search methods for numerical optimization.

acle, we emphasize that any method whatsoever can be employed to produce points that potentially

decrease the current value of the objective. Wc might perform an exhaustive search of the current

grid or we might specify a complicated pattern of points at which to search. We might appeal to

our prior knowledge of, or our intuition about, the objective function. It does not matter--the

convergence theory for pattern search methods encompasses all such possibilities.

For the sake of clarity, we describe more fully a specific pattern search algorithm. First, we

construct the grids on which the searches will be conducted. For n = 0, 1, 2,..., we define vector

lattices F(n) restricted to the feasible set [a, b] as follows: x E r(n) if and only if for each i -- 1,..., p

there exists ji E {0, 1,..., 2 n} such that

ji (bi - hi)
xi = ai + _

Thus, V(0) comprises the vertices of [a, b] and F(n+ 1)is obtained from F(n) by halving the distance

between adjacent grid points (see below). When we update the current grid, say F(n), in 2(b)(ii),

we either retain F(n) or replace r(n) with r(n + 1).

Next we specify a core pattern. Given Xc C [a, b], we say that xt E [a, b] is adjacent to xc if and

only if there exists k C {1,... ,p} such that

1 (bk -- ak)
xtk = xck -4- _-_

and xu = xci for i _ k. We take as the core pattern the set of grid points adjacent to the current

iterate. (For example, if the current grid is the integer lattice on _2 restricted to [a = (0, 0) _, b =

(8, 8)'], then the core pattern of (2, 0)' comprises (3, 0)', (2, 1)', and (1, 0)'.) We refine the grid, i.e.

we replace F(n) with F(n + 1), if and only if we have evaluated f at each grid point xt adjacent to

xc and failed to find f(xt) < f(Xc).

If f is continuously differentiable, then the theory developed by Lewis and Torczon (1996a)

guarantees that the specified algorithm will produce a sequence {xk} that converges to a Karush-

Kuhn-Tucker point of Problem (1). In practice, of course, the algorithm must terminate in a finite

number of steps. Termination criteria for pattern search methods--indeed, for direct search meth-

ods in general--have not been studied extensively, but that does not concern us here. By definition,

the assumption that Problem (1) is expensive means that we cannot afford enough evaluations of



the objectivefunctionto terminateby thetraditional criteriaof numericaloptimization. Forthe
problemsthat weconsider,the relevantterminationcriterion iswhetheror not wehaveexhausted
thepermittednumber(V) of function evaluations.

Derivative-free methods for numerical optimization can be quite profligate with respect to the

number of function evaluations that they require. Because the number of function evaluations

available to us is severely limited, wc want to use these evaluations as efficiently as possible. On

the bright side, the convergence theory for pattern search methods allows us to replace xc with any

xt for which f(xe) < ](xc). Hence, no matter how comprehensive a search for trial points we may

have envisioned, we can abort it as soon as we find a single trial point that satisfies f(xt) < f(Xc).

On the dark side, the oracle may require a great many function evaluations to produce even one

xt for which f(xt) < ](xc). Furthermore, if the oracle is unsuccessful, then we can not refine the

current grid until after f has been evaluated at each grid point adjacent to xc--a process that may

require as many as 2p additional function evaluations if xc is an interior grid point and f has not

yet been evaluated at any of the grid points adjacent to xc.

The fundamental purpose of this report is to introduce methods that reduce the expense of the

oracle. We do not attempt to reduce the number of points in the core pattern. For unconstrained

optimization, Lewis and Torczon (1996b) have introduced core patterns that contain only p + 1

points.

Pattern search algorithms may intentionally use large numbers of function evaluations. For

example, the oracle employed by Dennis's and Torczon's (1991) parallel direct search intentionally

casts a wide net, relying on parallel computation to defray the expense of evaluating the objective

function at a great many grid points. We are concerned with problems for which huge numbers of

function evaluations are not possible. Here, we want an oracle that proposes promising trial points

using only a small number of function values. Our strategy for creating such an oracle will be to

use previous function values to construct a current global model, it, of ], then use ]c to predict

trial points x_ at which f(xt) < f(xc). Thus, we will employ the strategy described in Section 1,

not once to replace Problem (1), but repeatedly to guide us to a solution of it. We now turn to a

description of the models that our oracles will exploit.

3 Computer Experiment Models

Suppose that we have observed y_ = f(xi) for i --- 1,...,n. On the basis of this information, we
want to construct a global model ] of f. Such inexpensive surrogates for f will be used by the oracle

in the pattern search algorithm to identify promising trial points at which to compute additional
function values.

We assume that there is no uncertainty in the Yi = f(xi), i.e. that no stochastic mechanism is

involved in evaluating the objective function. It is then reasonable to require the surrogate function

to interpolate these values, i.e. to require that ](xi) = f(xi). Furthermore, wc desire families of

surrogate functions that are rich enough to model a variety of complicated objective functions. We

are led to consider certain families of models that have been studied in the spatial statistics and

computer experiment literatures.

The families of models that we consider are usually motivated by supposing that f is a realization

of some (nice) stochastic process. For certain geostatistical applications, this supposition may be

quite plausible. In the context of using computer simulations to facilitate the engineering of better

product designs, its plausibility is less clear. The high-frequency, low-amplitude oscillations that

we have described do resemble the realization of a stochastic process, but the general trends that

are our primary concern do not. In any case, we regard the supposition of an underlying stochastic



process as nothing more than a convenient fiction. The value of this fiction lies in its power to

suggest plausible ways of constructing useful models and we will try to avoid invoking it excessively.

When we do invoke it, it should be appreciated that optimality criteria such as BLUe and MLE

(see below) are defined with respect to the fictional stochastic process and should not be invested

with more importance than the practical utility of the models to which they lead.

Our requirement that ](x,) = f(xi) will immediately suggest spline interpolation to the ap-

proximation theorist and kriging to the geostatistician. In fact, as explicated by Watson (1984) and

others, these two well-known methodologies are formally equivalent. Their motivations, however,

are somewhat different: whereas the goal of the former is to interpolate the f(xi) as smoothly as

possible, the goal of the latter is to approximate f as accurately as possible. It is evident that the

kriging perspective is more germane to our present concerns. The remainder of this section briefly

summarizes some relevant facts about kriging in the context of computer experiments. See Sacks,

Welch, Mitchell and Wynn (1989), Booker (1994), and Koehler and Owen (1996) for comprehensive

surveys of computer experiment methodology.

We begin by assuming that f is a realization of a stochastic process F that is indexed by the

continuous parameter set _P. Wc assume that this process has known mean #(x) = 0 and known

covariance function c(-, -), and that each symmetric p × p matrix c(s, t) is strictly positive dcfinite.
Let

f(xl)

y=

f(x )

and for each x E _P define b(x) E _n to minimize E[y'b- F(x)] 2. Then ](x) = y'b(x) is the best

linear unbiased predictor (BLUe) of f(x) and it is well-known that

](X) : ylC-l_(x), (2)

where C is the symmetric positive definite n × n matrix [c(xi, xj)] and

[ C(Xl, )
=

This is a simple example of kriging. Notice that kriging necessarily interpolates: since C-1C = I

and _xj) is column j of C,

](Xj) y'C-ic(xj) -_ != y ej : yj = f(xj).

Thus far we have assumed that the stochastic process is known. We now suppose that F is a

Gaussian process with mean it(x) ----a(xfl_ and covariance function c(s, t) -= a2re(s, t). We assume

that a : _P --* ]_q is a known function, that f_ C ]_q is an unknown vector, that a 2 > 0 is an

unknown scalar, and that re(-, ") is an unknown element of a known family of correlation functions.

Next let A denote the n × q matrix [aj(xi)], let R(O) denote the symmetric n × n matrix

[ro(xi, xj)], and let

]
r(x; 0) = : .

Then, for _ and 0 fixed, the BLUe of f(x) is (cf. equation (2))

](x) = a(x)'/_ + (y - A_)'R(O)-lr(x; O). (3)
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Thus, by varying/3 and 0, we define a family of interpolating functions from which we can select a

specific ] to model f.

Given a family of interpolating functions defined by (3), we require a sensible way of specifying

(/3, a 2, 0) and thereby ]. For 0 fixed, the maximum likelihood estimates (MLEs) of/3 and a 2 have

explicit formulas:

8(o)= [A'R(OI-IA]-IXR(OI-ly
and

n

To compute _, the MLE of 0, it turns out that one must minimize

n log b2(O) ÷ log dct R(O) (4)

as a function of 0.

It is now evident that, in specifying a family of correlation functions, there is a potential tradeoff

between the richness of the family defined by (3) and the ease of maximizing (4). The richer the

family of models, the more difficult it may be to select a plausible member of it. Most of the
previous research on computer experiments has been concerned with deriving a single model ]

that will be used as a permanent surrogate for f. Understandably, the authors have used rich

families with rather complicated correlation functions for which 0 is a vector of dimension p or

greater. This makes maximizing (4) difficult, but 0 need only be computed once. In contrast, we

are concerned with deriving a sequence of models that will be used for the sole purpose of guiding

our optimization of f. Hence, we are content to sacrifice some flexibility in (3) in order to simplify

minimizing (4). In the numerical experiments that we report in Section 5, wc used the 1-parameter

isotropic correlation function defined by

r6(s,t) = exp (--Oils -tll=),

where I1" II denotes the Euclidean norm on NP.

4 Model-Assisted Grid Search

The optimization strategies developed in this report are all predicated on a simple idea, viz. that

providing the oracle in Section 2 with an inexpensive surrogate model of the objective function

will allow it to more efficiently identify promising trial points and thereby reduce the cost of

optimization. The surrogate models will be constructed from known function values by kriging,

as described in Section 3. In this section, we describe the interplay between the pattern search

algorithm and the kriging models in greater detail.

We begin with an instructive analogy. For unconstrained minimization of smooth objective

functions, the numerical algorithms of choice are the quasi-Newton methods. An elementary expo-

sition of these methods was provided by Dennis and Schnabcl (1983), who emphasized the following

interpretation: a quasi-Newton algorithm constructs a quadratic model ]c of the objective function

f at the current iterate xc and uses ]c to identify a trial point xt at which it is predicted that

f(xt) < f(xc). For example, trust region methods obtain xt by (approximately) minimizing ]c

subject to the constraint that xt bc within a specified neighborhood of xc. The rationale for the

constraint is that the model it, which is usually constructed by computing or approximating the

second-order Taylor polynomial of f at xc, can only be trusted to approximate f locally.

6



1. Specifyan initial grid, F0,on [a,b].

2. Perform an initial computer experiment:

(a) Select initial design sites Xl,... ,xg E F0.

(b) Compute f(xl),..., f(xN).

(c) Construct ]0 by kriging.

3. Let Fc= F0. Let xc =argmin(f(xl),...,f(xg)). Let ]c = _ and Evalc = {xl,...,XN}.

4. Do until convergence:

(a) Do until Core(xc) C Evalc:

i. Apply an optimization algorithm to ]c to obtain xt EFc \ Evalc.

ii. Compute f(xt). Let Evalc = Evalc U {xt}. Update ]_.

iii. If f(xt) < f(xc), then let xc = xt.

(b) Refine Fc.

Figure 2: Model-Assisted Grid Search (MAGS) for minimizing an expensive objective function.

Trust region methods make effective use of simple local models of the objective function. Be-

cause we are concerned with situations in which evaluation of the objective function is prohibitively

expensive, we are prepared to invest more resources in constructing and optimizing more compli-

cated global models of the objective function.

Similarly, classical response surface methodology, from Box and Wilson (1951) to Myers and

Montgomery (1995), constructs local linear or quadratic regression models of a stochastic quadratic

objective function. Again, the purpose of these models is to guide the search for a minimizer or

maximizer. Glad and Goldstein (1977) also exploited quadratic regression models for optimization,

as did Elster and Neumaier (1995) to guide a grid search. Recently, nonparametric response surface

methods have been proposed in which global models of more complicated objective functions are

constructed. This work, e.g. Haaland (1996), is closely related to ours. Frank (1995) surveyed

numerous issues that arise when using global models of expensive objective functions to facilitate

optimization.

The remainder of this section develops a specific methodology for using global models to mini-

mize expensive objective functions. The essential logic of the methods that we propose is summa-

rized in Figure 2. For simplicity, we assume that the expense of all operations performed on the

model(s) is negligible in comparison to the expense of function evaluation(s). Dennis and Torczon

(1996) have proposed a general model management strategy that can be employed when it is nec-

essary to balance these expenses. This model management strategy is currently being developed

and extended by Serafini (1997) and is capable of accommodating our methods as a special case.

Techniques for designing the initial computer experiment in step 2 do not concern us here,

except for two details. First, it is convenient to employ a technique that permits the initial design

sites to be selected from the initial grid. Several such techniques were described by Koehler and

Owen (1996). Second, we must specify N, the number of initial design sites. A great deal of

numerical experimentation will be required before it becomes possible to suggest useful guidelines



for the choiceof N. Because we are concerned with problems for which sequential optimization is

practicable, considerably less than the entire budget of functions evaluations (V) will be invested

in initial design, i.e. we will choose N << V. At present, we prefer to choose N > p + 1, thereby

permitting at least a simplex design.

Because evaluation of the objective function is expensive, it seems sensible to cache the function

values that have been computed. We denote the current set of points at which f has been evaluated

by Evalc, which in step 3 we initialize to comprise the initial design sites. For any point x EFc, we

denote by Core(x) the core pattern of points adjacent to x. Then, in loop 4(a), Core(xc) C Evalc

is precisely the condition required by the convergence theory for pattern search methods that must

be satisfied before the current grid can be refined. Notice that this condition must eventually

obtain, i.e. loop 4(a) cannot repeat indefinitely, because Fc is finite and we only consider trial

points xt EFc at which f has not yet been evaluated. Thus, the logic of loop 4 is to (a) search for

points of improvement on the current grid until (b) we replace the current grid with a finer grid.

Loop 4 repeats until we have exhausted our budget of objective function evaluations.

It is within loop 4(a) that we exploit the models obtained by kriging. Step 4(a)(i) produces a

trial point xt at which f is evaluated in the hope that f(xt) < f(xc). As soon as f(xt) has been

computed, we add xt to the set Evalc and update the current model ]c. It is not entirely clear

how best to update ]c. One could completely refit the family of models to the new set of function

values, but one might decline to re-estimate certain parameters if one believed that the value of

updating them did not justify the expense.

The generality of the convergence theory for pattern search methods permits us to be rather

vague in specifying step 4(a)(i). This ambiguity is desirable because it encompasses a great many

possibilities deserving consideration. Thus, we can search for a local minimizer of ]c using whatever

algorithm we prefer, e.g. quasi-Newton, steepest descent, pattern search, etc. We can start our

search from whatever point we prefer or we can use multiple starting points and pursue multiple

searches before determining xt. We can even search for a global minimizer of ]c if we are so inclined.

Furthermore, we can terminate our search whenever we please. (We envision searching until we near
^

a local minimizer of fc, but we can terminate sooner if the search becomes expensive. Tradc-offs

between the cost of evaluating the objective function and the cost of constructing and optimizing

the models can be mediated by the model management strategy proposed by Dennis and Torczon

(1996) and developed by Serafini (1997).) The only requirement is that we eventually return a trial

point x_ that belongs to the current grid and at which f has not yet been evaluated.

Most search strategies for a desirable xt will not restrict attention to the current grid. Because

wc require xt E Fc, we suggest terminating the search when step lengths become appreciably smaller

than the minimal distance between grid points and choosing xt to be a grid point that is near the

terminal iterate of the search. There are various plausible ways of implementing this suggestion.

Wc might prefer the nearest grid point or we might prefer a nearby grid point at which the model

predicts greater decrease. Because we require xt ¢ Evalc, we might not actually select the nominally

preferred grid point. Similarly, if we are impatient to refine the grid, we might select xt E Core(x_)

even whcn a nonadjacent point is nominally preferred.

5 Numerical Experiments

We now describe some numerical experiments intended to illustrate the viability of the methods

proposed in Section 4. These experiments were performed on a Toshiba Satellite 100CS notebook

computer with a 75MHz Pentium processor, using S-PLUS for Windows software. In what follows,

univariate optimization (for parameter estimation) was performed using the S-PLUS function opti-
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Minimizer f(x) Frequency

(0,-10) 3 38

(-6,-4) 30 44

(18,2) 84 8

(12,8) 840 10

Table 1: Minima of the rescaled Goldstein-Price objective function on [-20, 20] × [-20, 20] found

by 100 quasi-Newton searches.

mize, an implementation of Brent's (1973) safeguarded polynomial interpolation procedure. When

finite-difference quasi-Newton methods for multivariate optimization were employed (typically for

minimizing models), they were performed using the S-PLUS function nlminb, an implementation

of a trust-region method for bound-constrained optimization developed by Gay (1983, 1984).

The objective function used in our experiments was a rescaled version of an eighth-order poly-

nomial of p = 2 variables constructed by Goldstein and Price (1971). One of the test problems

employed by Dixon and Szeg5 (1978) in their study of global optimization was to minimize the

Goldstein-Price polynomial in the feasible region [-2, 2] × [-2, 2]. We rescaled this problem so that

the feasible region was [-20, 20] × [-20, 20].

The Goldstein-Pricc polynomial is a complicated function that has four minimizers and is not

easily modelled. Because it is a polynomial, the minimizers are easily located by a finite-difference

quasi-Newton method. To estimate the relative sizes of their basins of attraction, we drew 100

points from a uniform distribution on the feasible region and started nlminb from each point. The
results are summarized in Table 1.

The models that we employed are a special case of the family specified by (3). We set q = 1, so

that fl is a scalar parameter, and a(x) -_- 1. We used the correlation function specified by (5) and

estimated the scalar parameter 0 by applying optimize to (4).

We implemented two strategies for derivative-free optimization with a small value of V, the

permitted number of objective function evaluations. First, we implemented a DACE strategy with

V = 11, 16, 21, 26. For these procedures, we constructed a model, ], from N = V - 1 design

sites obtained by Latin hypercube sampling. We then minimized ] by a finite-difference quasi-

Newton method, starting from the initial design site with the smallest objective function value.

The objective function was then evaluated at the minimizer of ] so obtained and the smallest of

the V function values was recorded.

Second, we implemented the MAGS strategy described in Section 4 with V -- 11, 16. For these

procedures, it is first necessary to specify an initial grid. This involves a trade-off: coarse grids tend

to safeguard against unlucky initial designs, whereas fine grids permit more function evaluations

before it becomes necessary to evaluate f at a core pattern of points in order to refine the grid. Our

choice of a family of grids was further complicated by the fact that the minimizers of our objective

function occur on the integer lattice in _2. To avoid using grids that contain the minimizers, we

selected an initial grid of the form

xi = -20 + j_r/2,

for ji = 0, 1, 2,.... Subsequent grids, which were rarely required, were obtained by halving the

current distance between adjacent grid points. To obtain an initial design on the initial grid, we

first obtained N = 5 points by Latin hypercube sampling, then moved each point to the nearest

grid point. The initial model was constructed from this design.
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Percentile DACEll DACE16 DACE21 DACE26 MAGSll MAGS16

Minimum

5%

10%

25%

5O%

75%

9O%

95%

Maximum

3.41 5.29 5.02 3.26 5.77 3.43

9.60 11.99 10.64 9.89 5.77 5.77

15.63 13.74 17.16 14.42 6.78 5.77

37.26 30.83 26.04 24.75 28.98 6.78

116.75 71.61 51.69 41.70 43.89 30.48

367.95 122.35 99.96 86.33 87.78 64.55

601.86 240.92 190.71 154.20 343.21 101.63

951.55 423.13 230.89 281.84 529.02 135.22

1027.52 1243.90 774.91 349.43 1617.61 885.32

Table 2: Percentiles of smallest values of the Goldstein-Price objective function found by six opti-

mization strategies, each replicated 100 times.

To obtain a trial point, xt, from the current iterate, xc, a finite-difference quasi-Newton method
was started from xc to obtain a minimizer, &, of the current model, it. Let • denote the grid

point nearest &. If the objective function had not previously been evaluated at _, then we set

xt = _; otherwise, we set xt equal to the point in Core(_) nearest &. Each time that a new function

value was obtained, we re-estimated all three of the model parameters, (fl, a 2, 0). This process was

repeated until V function evaluations had been performed, at which time the smallest function
value was recorded.

Each of the six procedures described above was replicated 100 times. The results are summarized

in Table 2, from which several interesting conclusions can be drawn. First, we note that each

strategy did indeed do better when permitted more function evaluations. Thus, DACE with V = 16

function evaluations usually outperformed DACE with V = 11 function evaluations and MAGS with

V = 16 function evaluations usually outperformed MAGS with V = 11 function evaluations. This

result is not surprising.

Second, we note that MAGS typically found smaller function values with fewer function eval-

uations than did DACE. The crucial comparisons are between DACE and MAGS with V = 11
function evaluations and between DACE and MAGS with V = 16 function evaluations. In each

case, typical performance decisively favors MAGS. For example, the median best function value

found by MAGSll is less than 40 percent of the median best value found by DACEll. Similarly,

the median best function value found by MAGS16 is less than 45 percent of the median best value

found by DACE16.

The DACE experiments with V -- 21, 26 were included to benchmark the performance of MAGS.

Except for the extreme upper percentiles, the distribution of best function values found by MAGS

with V -- 11 is strikingly similar to the distribution of best function values found by DACE with

V -- 26 function evaluations. Thus, another way to state the case for MAGS is to observe that

DACE typically required more than twice as many function evaluations to match the performance

of MAGSll. Such observations confirm the central thesis of this report, that optimization is most

efficiently accomplished by iterative methods. This is a familiar issuc in statistics that is often

raised when comparing Taguchi and response surface methods, e.g. in the pancl discussion edited

by Nair (1992) and by Trosset (1996). Our results strengthen the cases made by Frank (1995),

Booker et al. (1995), Booker et al. (1996) and Booker (1996) for using sequential modeling strategies

to optimize expensive functions.

Wc note that despite its generally superior performance, MAGS occasionally disappoints. For
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example,the lower75percentof the distributionsof bestvaluesfoundby DACEwith V = 26 and

by MAGS with V -- 11 are remarkably similar, but the former's upper 10 percent is markedly better

than the latter's. MAGS with V = 16 found a smallest function value less than or equal to 142.70

on 97 occasions, but found smallest values of 688.75, 855.64, and 885.32 on the other three. This

anomalous phenomenon seems to result from unfortunate initial designs. With only N = 5 design

sites, Latin hypercube sampling on a grid occasionally results in transparently bad designs, e.g. five

collinear sites, from which MAGS has difficulty recovering. To safeguard against this possibility,

we recommend using more sophisticated procedures for determining the initial design.

6 Conclusions and Future Work

The results presented in Section 5 suggest that the potential value of the methods that we have

proposed for optimizing expensive objective functions is considerable. Of course, comprehensive

numerical experiments on a variety of objective functions in a variety of dimensions will bc required

to fully appreciate the advantages and disadvantages of these methods. We plan to undertake such

investigations in future work. We conclude this report by describing some modifications of MAGS

that we envision for these investigations.
^

We begin by noting that the design of the current model, fc, is sequential, comprising the initial

design sites xl,..., xg and the trial sites xt subsequently identified in 4(a)(i) in Figure 2. At present,

the initial design sites are selected according to the principles of experimental design without regard

to optimization, whereas the subsequent trial sites are determined by an optimization algorithm

without regard to the design of experiments. Because the sequence of trial points generated by an

optimization algorithm tends to cluster in promising regions, this sequence is rarely space-filling

and is not likely to be a good experimental design. Moreover, especially during the early stages of

optimization, greater gains are likely to come from improving the fit of fc to f than from accurately

identifying a minimizer of ]c. Our present implementation of MAGS is a greedy algorithm in the

sense that it tries to minimize ]c without concern for the fit of the subsequent model, ]+.

The desirability of balancing the concerns of numerical optimization and the concerns of ex-

perimental design was recognized by Frank (1995), who proposed a dichotomous search strategy.

Given an optimization criterion, e.g. the objective function, and a design criterion, one obtains some

fraction of new design sites using one criterion and the balance using the other. An implementation

of this Balanced Local-Global Search (BLGS) strategy was described by Booker et al. (1995) and

employed by Booker (1996) and Booker et al. (1996).

In contrast to the dichotomous BLGS strategy, we envision modifying 4(a)(i) as follows: apply

an optimization algorithm to a merit function, (_c, to obtain xt EFc \ Evalc. The merit function

should be specified so as to balance the potentially competing goals of finding sites at which ]c is

small and choosing good design sites. Notice that this modification in no way affects the convergence

theory for MAGS--it is a purely empirical matter whether or not it improves the performance of

the algorithm.

To illustrate what we have in mind, we again invoke the fiction that the objective function, f,

is a realization of a stochastic process. Under the assumptions delineated in Section 3, the mean

squared error of (3) for predicting .f(x) is

( [ 0 A' ]-1[ a(x) ])AR(O) r(x;O)MSE [](x)] = a 2 1 - [a(x)',r(x;O)'] q

As detailed by Sacks, Welch, Mitchell and Wynn (1989), this function plays a fundamental role

in several approaches to optimal design. It is also the design criterion employed by Booker et al.
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(1995)andBooker(1996)in BLGS.Our ideais to constructa merit functionthat encouragesthe
selectionof trial points at whichthe meansquarederror is large,i.e. at whichwebelievethat
lessis knownabout the objectivefunction. This strategyhas a greatdeal in commonwith the
SequentialDesignfor Optimization(SDO)algorithmfor globaloptimizationproposedby Coxand
John (1996).

Themeansquarederror functioncanbeestimatedby replacingthe parameters(_,0 "2, 0) with

their MLEs, resulting in an expression that we denote by

Then a natural family of merit functions comprises those of the form

Oc(x) : ]c(x) - pcMS_E [it(x)] ,

where Pc >_ O. We anticipate that a great deal of numerical experimentation will be required to

determine useful choices of the Pc.

We also note that our family of kriging models was derived under the assumption of a stationary

stochastic process. In fact, it seems rather implausible that the same correlations will obtain

throughout the feasible set, so that we likely will prefer different values of 0 for different regions of

[a, b]. This poses a problem, because the ]c are global models. As we descend into the basin of a

local minimizer, we would like to use a value of 0 that is suited to that basin, not a value of 0 that

was determined by a global compromise.

An obvious way of addressing this difficulty is to implement the "zoom-in" process proposed by

Frank (1995). To do so, we occasionally modify the feasible set, restricting it to a much smaller set
in which a minimizer is deemed to lie. Then the current model, ]c, is determined by the design sites

in, and restricted in domain to, the current feasible set, [ac, bc]. From a theoretical perspective,

this is a delicate strategy that must be carefully implemented in order to preserve the guaranteed

convergence that has thus far been inherited from the standard theory for pattern search methods.

However, properly implemented, updating the feasible set may permit a useful localization of the

kriging models.

Assuming that we are prepared to replace the current feasible set with a subset of it, when

should we do so? When step 4(a)(i) begins to produce trial points xt E Core(xc), one might guess
that Xc is near a local minimizer and that the algorithm is preparing to refine the current grid.

As previously noted, this can be an expensive undertaking, requiring as many as 2p evaluations

of f. At this stage, an interactive user might very well instruct the algorithm to refine the grid

without actually cvaluating f on Core(xc), reasoning that an asymptotic convergence theory may

be of little relevance when one can afford only a small number of iterations.

Alternatively, one might interpret the same scenario as a signal to recalibrate the problem.

First, onc would replace the current feasible set with a smaller one. Second, instead of performing

2p function evaluations on Core(xc)--a set of points that is not a good design_ne would rcplace

the current grid with a finer grid, design an experiment for the new grid, and proceed. At present,

there is no theory to justify these tactics, but it seems quite plausible that they will result in

practical improvements of an alre_ty-promising procedure.
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